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Abstract-A new expression of the droplet Sherwood number (Sh) is presented based on the theoretical 
treatment of the temperature dependent gaseous diffusion coefficient. The experimentally specified par- 
ameters were correlated by means of recent data on water droplets evaporating in the flow field. The mass 
flux correlation is given as a function of the Reynolds (Re) and Schmidt (SC) numbers, and it turned out 
to be Sh = (2.009+0.514Re”2 SC”~). The Sherwood number should be multiplied by a strictly theoretical 
correction factor which depends on the droplet and gas temperatures and which is order of 0.9, if the 
temperature deviation is order of 100 K. The introduction of the correction factor seems to remove a 

discrepancy existing between the earlier theoretical treatments and experimental data. 

INTRODUCTION 

Evaporation of drops is a process, which is important 
in many industrial (e.g. combustion, spray drying, wet 
scrubbing) and atmospheric processes (e.g. releases of 
hazardous materials, evaporation of rain droplets). 
The evaporation is determined by simultaneous mass 
and energy transfer. If the surrounding gas is moving 
with respect to a droplet, the diffusive rates of mass 
and heat transfer from the droplet surface are 
increased. The convective transfer may be due to the 
relative velocities of the gas and droplets (forced con- 
vection) or due to density gradients (free convection). 

In the present paper we present a new expression 
for the droplet Sherwood number due to forced con- 
vection. The expression is based on the theoretical 
treatment of diffusive mass transfer in the continuum 
regime and it includes the Stefan flow [ 1,2]. The fitting 
of correlation parameters in the Sherwood number is 
done using the recent experimental data on the mass 
flux of an evaporating water droplet [3]. 

THEORY 

In order to calculate droplet evaporation, it is 
necessary to determine the gas-phase mass flux density 
(the rate at which mass of species passes through a 
unit cross section placed perpendicular to the velocity 
of species) and the actual droplet temperature. In this 

study we will not consider the methods to estimate the 
droplet temperature ; we treat the mass flux density 
expression assuming that the temperature is known. 
For a single component droplet in the convective-free 
case, the continuum regime expression is well-known, 
originating from the Stefan-Maxwell equations [4], 
On the contrary, only some general mathematical 
solutions for forced convective transfer around drop- 
lets are available [S-8] because of the changes of flow 
characteristics with droplet Reynolds number. For 
that reason one usually applies the diffusive mass flux 
expression (giving the rate at which mass of species is 
transferred from a droplet surface) corrected semi- 
empirically for forced convection, i.e. the diffusive 
mass flux is multiplied by the droplet Sherwood 
number. However, in order to obtain algebraic 
expression for the diffusive mass flux, the mass flux 
density expression must be integrated. The correct 
temperature dependence of the gaseous diffusion 
coefficient is normally neglected in the integration, but 
it can be very significant as will be shown below. 

Diffusive mass&x 
We present briefly the derivation of the diffusive 

mass flux expression for a spherical droplet contained 
in an infinite volume of a tranquil inert gas. The 
expression includes the correct temperature depen- 
dence of the gaseous diffusion coefficient (for more 
details see ref. [I] : see also ref. [2]). 
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1 
NOMENCLATURE 

cl droplet radius SC Schmidt number 
( molar density of gas Sl7 Sherwood number 
C correction factor resulting from T temperature 

temperature dependent diffusion -Y mole fraction of vapor. 
coefficient 

D binary diffusion coefficient Greek symbols 
I mass flux s(, /I fitting parameters for Sherwood 

.z mass flux density number 

M\, molecular weight of vapor P coefficient for temperature dependence 

P total gas pressure of diffusion coefficient. 

P\ partial vapor pressure 
r radial distance Subscripts 
R universal gas constant a value at droplet surface 

Re Reynolds number ‘X value far from droplet. 

In the absence of a gradient in the total pressure The effect of the temperature deviation can be ana- 
and in the absence of external forces, the mass flux 
density resulting from ordinary molecular diffusion is 
given by (see refs. [2, 4, 9, IO]) 

DMvp 
.’ = - RT(I -p,/p) V(P”/P). (1) 

Here vapor and inert gas are assumed to be ideal, i.e. 
the ratio of the partial pressure of vapor (p>) to the 
total pressure (p) is equal to the mole fraction of 
vapor. n/r, is the the molecular weight of vapor and 
R is the general gas constant. The binary diffusion 
coefficient D depends on temperature T approxi- 
mately by [ 1 I] 

D(T) = D, (T/T,,)’ (2) 

where D, is the diffusion coefficient at the temperature 
T, far from the droplet (this reference temperature is 
chosen for convenience). The coefficient p varies in 
most cases from 1.5 to 2.0 [1 l] and over small tem- 
perature ranges it can be assumed constant. Note that 
the binary diffusion coefficient is virtually independent 
of composition. 

For stationary mass transfer V *i = 0 and the con- 
stant mass flux can be readily identified as 

D(WMv d(p,/p) 
I= -4nr2 (1 -p%/p)RT dr (3) 

where Y is the radial distance. The mass flux is nor- 
mally estimated by integrating the above expression 
over r and p\ and by assuming the gas temperature 
(and D) as constant (see ref. [9]). In this approach the 
temperature is often set equal to T, and D is estimated 
also at T, or at the geometric mean J(T, T,) [12], 
where subscript a refers to the value at the droplet 
surface. However, if the temperature deviation 
between the droplet surface and the infinity is several 
tens of degrees Kelvin its effect starts to be con- 
siderable [2] and a more correct form of the tem- 
perature dependence is desired. 

lytically estimated using the hyperbolic temperature 
profile 

T= L+iT,-W;. (4) 

This expression is a bit inaccurate, assuming implicitly 
a constant thermal conductivity and a constant 
vapour enthalpy [2] (see also refs. [lo] and [13]). but 
it offers a straightforward method to replace r-depen- 
dence by T-dependence in equation (3) ; namely 

dr dT _=_ 
/.? u(T,-T,)’ 

(5) 

Substituting this into equation (3) and separating of 
variables we obtain 

IR T 
dT---- = 

’ d(p,;p) 
47mM,(T,- T,) D(T) ’ 

- (6) 
1 -PA 

Using equation (2) the integration gives 

4napM, D jr C ]= -- 
RT, 

In 1 -PulP 
1 --P\ I II, 

(7) 

where 

if p # 2.0 and 

7-7 -T, c=------ 

T, In% 

(8) 

if p = 2.0. The behaviour of these expressions in 
different cases (for example, T, + Tr) is discussed in 
ref. [2]. Note that if the Stefan flow is neglected the 
logarithmic term in equation (7) reduces only to a 
difference of vapor pressure ratios. 
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The Sherwood number 
Different definitions for the average droplet Sher- 

wood number have been presented by various authors. 
The effect of the Stefan flow has been often neglected 
(e.g. ref. [14]) or it has been approximately included 
using slow mass-transfer rate assumption (e.g. refs. 
[4, 15, 161). Renksizbulut et al. [17] corrected empiri- 
cally the Sherwood number for high mass-transfer 
rate (blowing effect). Downing [18] included the cor- 
rect form of the Stefan flow in the definition of the 
Sherwood number and he introduced also a tem- 
perature dependent empirical correction. Schwarz and 
Smolik [3] have compared their own experimental 
results with the different definitions mentioned just 
above. 

According to equations (7) and (8) or (9), we define 
the Sherwood number as 

I 

Sh = C2nac,,D, In ((1 -x,,)/(l --x,,)) (lo) 

where c,, is the molar density far from the droplet and 
I,, and x,, are the vapor mole fractions at the droplet 
surface and far from the droplet, respectively. In the 
absence of forced convection Sh is equal to 2 by defi- 
nition. Note that the above expression is similar to 
that of Downing [18] who introduced the exper- 
imental correction factor instead of the factor C. 

RESULTS AND DISCUSSION 

To make the correlation for the Sherwood number 
we used recent data obtained by Schwarz and Smolik 
[3] for water droplet evaporation. They presented 186 
experimental points for the mass flux in the Reynolds 
number range (30 < Re < 180) when the gas tem- 
perature varied from 314 to 449 K and the measured 
droplet temperature varied from 287 to 315 K. The 
free stream velocity varied from 0.5 to 1.7 m s-’ and 
the drop diameter from 0.7 to 2.3 mm [3]. 

For the intermediate Reynolds number range, as 
here, theoretical and experimental results suggest that 
[I‘!-161 

Sh = a+fl Re”’ SC”~ (11) 

where SC is the Schmidt number. The parameter c( 
should be near to 2 from the requirement of the con- 
sistent theory. The Reynolds and Schmidt number 
include some thermophysical properties of gas mix- 
ture which should be evaluated at an appropriate 
reference temperature 7’,,, and composition P”~,~. Typi- 
cally T,,, = T,, or T,,,:, = T,+ 1/2(Ts - T,) or 
T r,, ,1 = T, + l/3( T, - T,) with the respective defi- 
nitions forp,,,,. The thermophysical properties needed 
for correlations were adopted from refs. [19] and [20]. 
The coefficient p was 1.8 [ 191 and the correction factor 
c‘, equation (8), varied from 0.86 to 0.98. 

By correlating the data of Schwarz and Smolik [3] 
with equations (10) and (1 l), we discovered that 

Sh = 2.009+0.514Re”’ SC” (12) 

with the correlation coefficient of 0.94. The plot of 
this formula and the experimental data are presented 
in Fig. 1. The correlation indicates a good fit of the 
data and it predicts well the theoretical interception 
value of 2. For the thermophysical properties 
T,,, = Tr,,,, and pvr.i = ~~~~~~~ were used (see also refs. 
[21] and [22]), but we also tried other definitions. 
Their accuracy was almost as good as that of the T,,, 3 
and JJ,,~,,,~ correlations. 

The regression equation obtained here agrees well 
with previous results. The coefficient p is close to the 
value (0.552) obtained by Friissling [14]. Downing 
[ 181 presented the temperature dependent correction 
factor for the Sherwood number with /I = 0.6. His 
strictly empirical correction I - 0.4( 1 - T, /TJ is quite 
close to the our theoretical correction C in the con- 
ditions considered in this study. Finally, Wedding ef 
al. [23] presented the regression formula with 
cz = 1.755 and p = 0.535, and concluded that since the 
intercept value is significantly less than 2 there is an 
anomaly between theory and experimental data. How- 
ever, when we made a new correlation with the cor- 
rection factor C set to unity, the formula was found 
to be 

Sh = 1.738+0.479Re’:’ SC’ ‘. (13) 

The fitting is still very good (the correlation coefficient 
was 0.93), but the value of the parameter r~ is incon- 
sistent and close to that of Wedding et al. [23]. Note 
however that Wedding et al. have calculated the ther- 
mophysical properties at infinity, while with C = 1 we 
have calculated the gaseous molar density and the 
diffusion coefficient at infinity and Re and SC by using 
113 rule. 

CONCLUSIONS 

The new correlation for the droplet Sherwood num- 
ber has been presented in the intermediate Reynolds 
number range. It includes the explicite temperature 
dependence of the diffusion coefficient and offers a 
clear physical background for mass transfer at high- 
temperature conditions. The intercept value at Re + 
0 given by the fit is practically the theoretical lower 
limit (2) for Sh. The correlation is based on data of 
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Fig. 1. Correlation of the experimental data [3] according to 
equation (10). 
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Schwarz and Smolik [3], including the droplet tem- 
peratures measured by a thermocouple 25 pm in diam- 
eter. Since the exact magnitudes of the presence of the 
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capillary, the water adding and the thermocouple on 9. J. C. Barrett and C. F. Clement. Growth rates for liquid 

droplet heat exchange processes are not known, any drops, J. Aerosol Sci. 19,223-242 (1988). 

new information on the droplet Nusselt number can IO. P. E. Wagner, Aerosol growth by condensation. In Acro- 

not be deduced from the used data. In the future the 
solMicroph~~.~ics II, pp. 129-l 78. Springer, Berlin (1982). 

new correlation should be verified in the conditions of 
1 I. R. C. Reid. J. M. Prausnitz and B. E. Poling, The Propw- 

ties of Gases and Liqziids (4th Edn). p. 596. McGraw- 
larger temperature deviation, stronger Stefan flow and Hill, New York (1987). 
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